Roll No. \square

B. TECH

(SEM IV) THEORY EXAMINATION 2022-23 ENGINEERING MECHANICS

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$
(a) State and explain the principle of transmissibility of forces.
(b) Explain the following terms.
(i) Coefficient of friction.
(ii) Angle of repose.
(c) Define and explain the term: perfect, deficient and redundant frame.
(d) Define point of contraflexure.
(e) Define radius of gyration.
(f) Define polar moment of inertia.
(g) State and explain D'Alembert's principle.
(h) Explain rectilinear motion.
(i) State Hook's Law.
(j) Define the term: strain energy and resilience.

SECTION B
2. Attempt any three of the forwing:
$10 \times 3=30$
(a) The following foges act at a point as shown in figure, find out the magnitude and direction of regtant force.

(b) Determine the forces in the members of truss shown in the figure below.

(c) State and prove the following theorems of moment of inertia:
(i) Perpendicular axis theorem.
(ii) Parallel axis theorem.
 m / s as shown in below figure. Determine (i) wwitith wwhthat iimititiall wellociity wwilll thleq gurm recoil; (ii) if the recoil is overcome by an average force of $\mathbf{6 0} \mathbf{~ k N}$, how far will the gun travel and how long will it take.

(e) Define pure torsion? List the assumptions made in torsion theory. Derive the torsion equation.
where,

> T = Maximum twisted torque.
$\mathrm{R}=$ Radius of shaft.
$\mathrm{I}_{\mathrm{p}}=$ Polar moment of inertia.
= Shear stress.
$\mathrm{C}=$ Modulus of rigidity.
$=$ The angle of twist (radians), and
$=$ Length of shaft.

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$
(a) A string ABCDE whofe extremity \mathbf{A} is fixed has weights \mathbf{W}_{1} and W_{2} attached to it at B and C, and p s sies round a smooth peg at D carrying a weight of 800 N at the
 and $A B$ and $)^{C D}$ makes angle of 150° and 120° respectively with $B C$, make calculatio ${ }^{\prime}$ for:
(i) The tensions in portions $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DE of the string.
(ii) The values of weights W_{1} and W_{2}.

(b) Two block A and B weighting 50 N and 80 N respectively are positioned as shown in below figure. The coefficient of friction between ground and block B is 0.1 and that between block B and block A is 0.28 . State whether B is stationary with respect to ground and A moves or B iss stetimmay with neaspeto th. Arofeecked to determine the minimum value of weight W in the pan so that motion starts.

4. Attempt any one part of the following:

$10 \times 1=10$
(a) Draw the bending moment and shear force diagram for overhanging bexamislsbhwwininiththe figure below.

(b) Analyze the forces in each member of truss shown in figure below. All the members are of 3 m length.

5. Attempt any one part of the following:

 shaded in the below figure. The section consists of triangle ABC, semi-circle on BC as diameter, and a circular hole of diameter 4 cm with its center on $B C$.

(b) Determine the centroid of the wire shown in below figure.

6. Attempt any one part of the following:

(a) At a certain instant a body of mass 10 kg falling freely under the force of gravity, was found to be falling at the rate of $20 \mathrm{~m} / \mathrm{s}$. what force will stop the body in
i) $\quad 2$ seconds and
ii) 2 meters
(b) Blocks A and B weighing 10 N and 4 N respectively are connected by a weightless
 making 60° and 45° with the horizontal as shown in figure below. Deperterimene: (i)
 from rest.

7. Attempt any one part of the following:
(a) Define pure bending? List the assumptions made in bending theory. Derive the bending equâtion.
where,
$\mathrm{M}=\mathrm{Moment}$ of resistance.
I = Moment of inertia of the section about neutral axis.
$\mathrm{E}=$ Young's modulus of elasticity.
R = Radius of curvature of neutral axis, and
= Bending stress.
 the relation for strain energy.

